Tetrameric hub structure of postsynaptic scaffolding protein homer.
نویسندگان
چکیده
Homer is a crucial postsynaptic scaffolding protein involved in both maintenance and activity-induced plasticity of the synapse. However, its quaternary structure has yet to be determined. We conducted a series of biophysical experiments that provide the first evidence that Homer forms a tetramer via its coiled-coil domain, in which all subunits are aligned in parallel orientation. To test the importance of the tetrameric structure for functionality, we engineered dimeric and tetrameric Homer by deleting a part of coiled-coil domain or replacing it with artificially engineered dimeric or tetrameric coiled-coil domain from a yeast protein. The structure-activity relationship was determined by assaying cocluster formation with its ligand in heterologous cells, distribution in dendritic spines, and turnover rate of protein exist in dendritic spines. Our results provide the first insight into the structure of native Homer protein as a tetramer and the functional significance conferred by that structure.
منابع مشابه
Neuroadaptations in the cellular and postsynaptic group 1 metabotropic glutamate receptor mGluR5 and Homer proteins following extinction of cocaine self-administration.
This study examined the role of group1 metabotropic glutamate receptor mGluR5 and associated postsynaptic scaffolding protein Homer1b/c in behavioral plasticity after three withdrawal treatments from cocaine self-administration. Rats self-administered cocaine or saline for 14 days followed by a withdrawal period during which rats underwent extinction training, remained in their home cages, or w...
متن کاملReceptor activation and homer differentially control the lateral mobility of metabotropic glutamate receptor 5 in the neuronal membrane.
Glutamate receptors are clustered at the membrane through interactions with intracellular scaffolding proteins and cytoskeletal elements but can also be found in intracellular compartments or dispersed in the membrane. This distribution results from an equilibrium between the different pools of receptors whose dynamic is poorly known. The group I metabotropic glutamate receptor 5 (mGluR5) is co...
متن کاملThe Postsynaptic Density Proteins Homer and Shank Form a Polymeric Network Structure
The postsynaptic density (PSD) is crucial for synaptic functions, but the molecular architecture retaining its structure and components remains elusive. Homer and Shank are among the most abundant scaffolding proteins in the PSD, working synergistically for maturation of dendritic spines. Here, we demonstrate that Homer and Shank, together, form a mesh-like matrix structure. Crystallographic an...
متن کاملSelect Overexpression of Homer1a in Dorsal Hippocampus Impairs Spatial Working Memory
Long Homer proteins forge assemblies of signaling components involved in glutamate receptor signaling in postsynaptic excitatory neurons, including those underlying synaptic transmission and plasticity. The short immediate-early gene (IEG) Homer1a can dynamically uncouple these physical associations by functional competition with long Homer isoforms. To examine the consequences of Homer1a-media...
متن کاملEndogenous homer proteins regulate metabotropic glutamate receptor signaling in neurons.
Group I metabotropic glutamate receptors (mGluR1 and mGluR5) are important neuronal mediators of postsynaptic signaling that influence synaptic strength, plasticity, and other factors. Regulation of group I mGluR localization and function by Homer proteins appears to be a viable means for neurons to fine-tune these processes. The presence of different Homer isoforms can act as a switch to repri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 33 شماره
صفحات -
تاریخ انتشار 2006